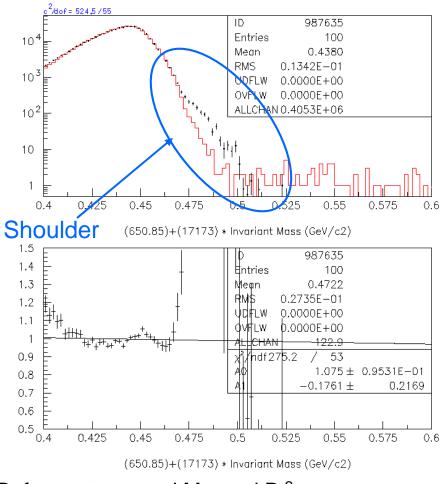
Search for $K_L \rightarrow \pi^0 \mu\mu$ in 1999 Data

- Outline
 - Issues from last meeting
 - KL→π⁰μμ analysis
 - KL $\rightarrow \pi^+\pi^-\pi^0$ MC:decay & punch-through MC/Data mismatch
 - Implementing KL $\rightarrow \pi^+\pi^-\pi^0$ MC changes
 - Magnet simulation
 - KL→π⁺π⁻π⁰:No forcing of decay or punch through Select decay/punch-thru events at generator level
 - New issues with $KL \rightarrow \pi^+\pi^-\pi^0 MC$ No selection at generator level

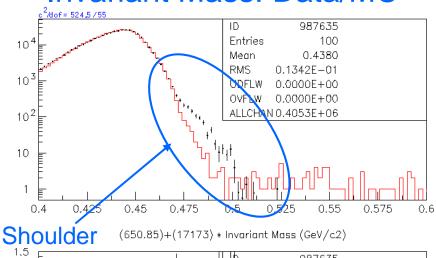
Plans

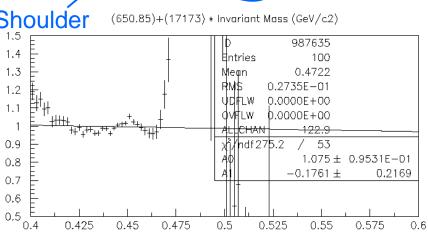

Old KL $\rightarrow \pi^+\pi^-\pi^0$ MC

- Generated KL→π⁺π⁻π⁰ MC
 - Forced both π s to decay
 - Forced both π s to punch through
- Normalizations
 - Pion forced decays
 - Force pions to decay between 90m-188m
 - Probability is based on lifetime and pion momentum
 - Pion punch-through *
 - Use punch through probability from Masayoshi's GEANT study
 - Need event weight for correct distributions (Evt wt = $P\pi + *P\pi$)
 - Normalization issue from previous analyses
 - * Problem punch through probability was for pions that MIP in Csl. My program applied this probability to ALL pions
 [Not a big issue since I floated the relative distributions anyway]

1999 Data/ $K_L \rightarrow \pi^+\pi^-\pi^0$ MC Comparison

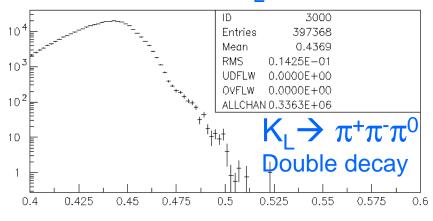
- $K_1 \rightarrow \pi^+\pi^-\pi^0 MC$
 - Normalizations
 - Forced decays generated
 ~1 x 1999 data set
 - Punch through generated
 ~35 x 1999 data set? (Wrong:
 applied MIP punch through prob
 to all pions)
 - 1 decay + 1 punch same normalization problem as above
 - Data/MC scalings are from fit
 - Need to check normalizations to see if scalings from fit make sense (Decide to generate not forcing the decays (no event weight needed))

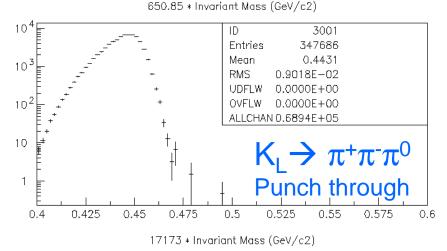

$K_1 \rightarrow \pi^0 \mu \mu$ Invariant Mass



Before cuts around $M_{3\pi}$ and Pt^2 cut

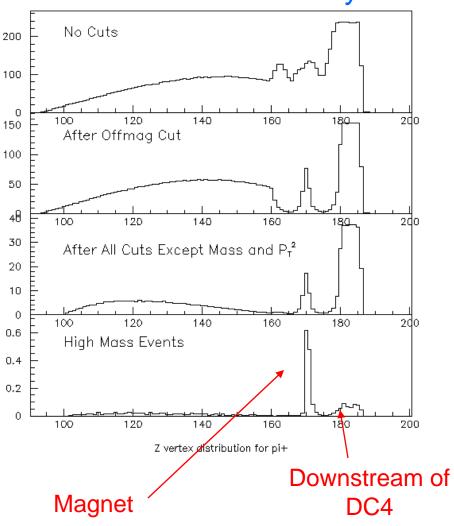
Invariant Mass Contributions


Invariant Mass: Data/MC

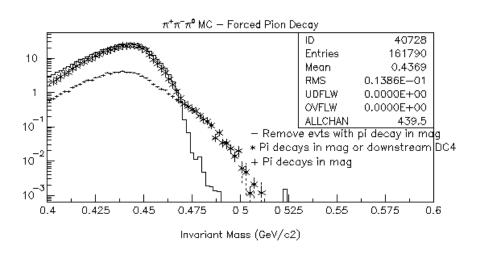


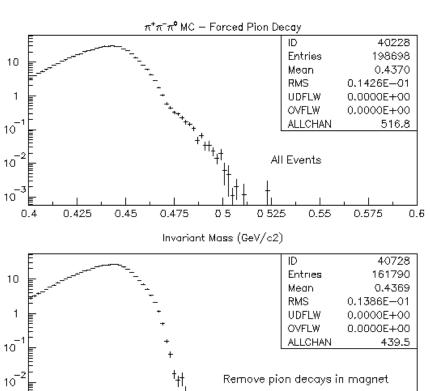
(650.85)+(17173) * Invariant Mass (GeV/c2)

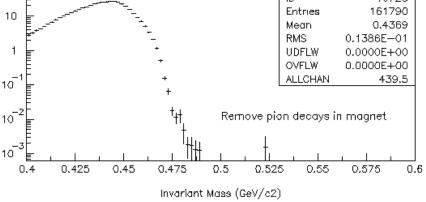
Invariant Mass: $K_1 \rightarrow \pi^+\pi^-\pi^0 MC$



High Mass Events

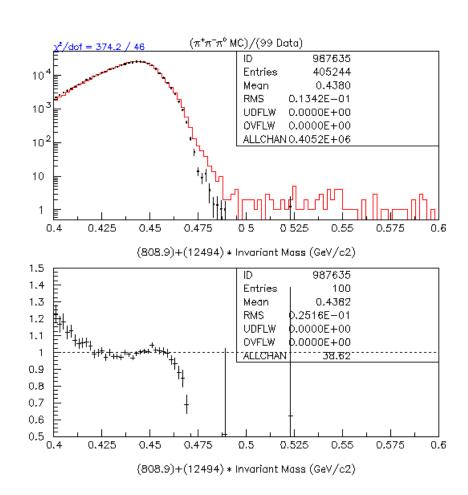

- Trying to understand the high mass events
 - Pion decay vertex distribution of events
 - As expected offmag cut removes all but pion decays in magnet and decays downstream of DC4
 - High mass events seem to come predominantly from the magnet region





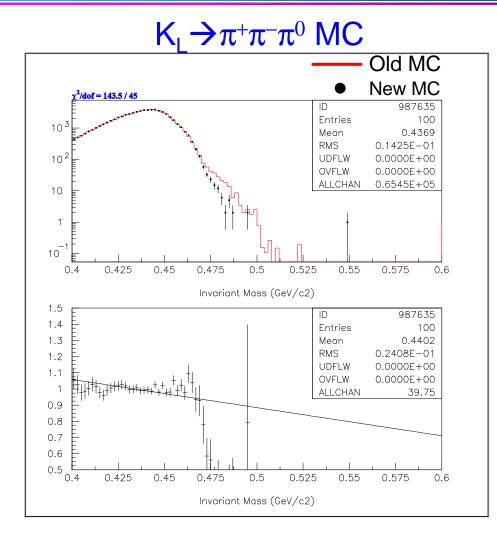
Separate High Mass Events

High mass tail comes from pion decays in the magnet



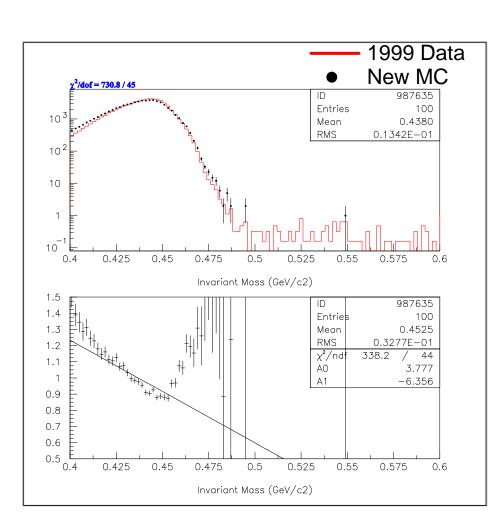
Data/(MC-decays in magnet)

- Fit to data removing events with pion decays in magnet
 - Better fit, but now the MC underestimates the higher mass region
- Tony suggests the problem is the simulation of the magnet kick
 - Same problem seen by analyses looking at electrons that radiate in the magnet
 - Use Mike Wilking's program to swim the events through the magnet

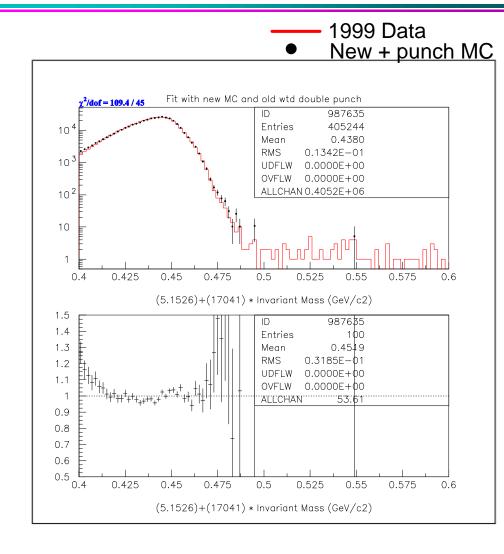


Changes to $KL \rightarrow \pi^+\pi^-\pi^0$ MC

- Implement the following changes to my v6.00 MC
 - ✓ Use Mike Wilking's magnet swim routines
 - Don't generate punch through and pion decays separately
 - Run using ktevmc, selecting events with 2 pion decays, 2 punch throughs or 1 punch + 1 decay
 - Use RickK's v.6.02 pion punch through routine
 - Uses probabilities determined from Vus data ($P_{MU3 punch} \sim 6.6E-5*E\pi$)
 - Problem: Rick's program generates punch through at Stage 35 (after digitization)
 - Only generates punch through for pions that MIP in CsI (33%)
 - All $\pi^+\pi^-\pi^0$ events must go through digitization
 - \rightarrow SLOW
 - ✓ Fix: Generate punch through at Stage 20 (after tracing)
 - Modify punch through probability to apply to ALL pions
 - Remove punch through events that don't MIP at Stage 35


Old /New $K_1 \rightarrow \pi^+\pi^-\pi^0$ MC Comparison

Compare old K_L→π⁺π⁻π⁰ MC versus new K_L→π⁺π⁻π⁰ MC where I've selected events with 2 pion decays, 2 punch throughs or 1 punch + 1 decay

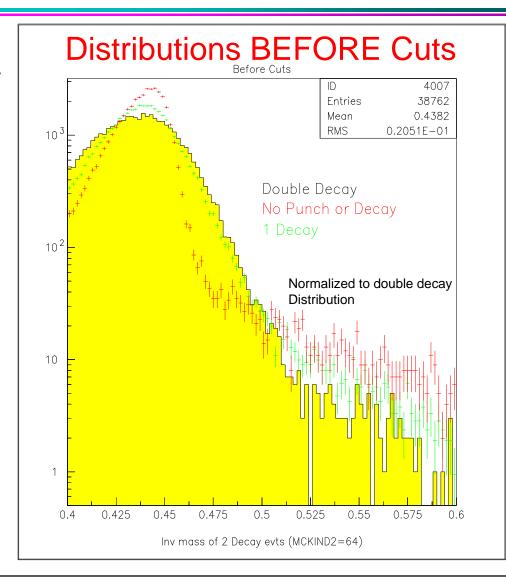

1999 Data/New $K_L \rightarrow \pi^+\pi^-\pi^0$ MC

- Fit 1999 Data with New K_L→π⁺π⁻π⁰
 MC, where I've selected events with 2 pion decays, 2 punch throughs or 1 punch + 1 decay
 - Floated MC in fit (normalization doesn't seem correct)
 - Shoulder is gone, but shape is still wrong

New + old punch-thru $K_L \rightarrow \pi^+\pi^-\pi^0$ MC

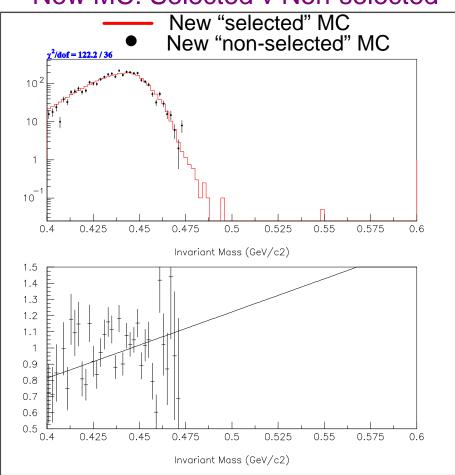
- Fit 1999 data using new MC and old punch-through MC (wtd evts)
 - Fit is better, but new MC already has punch-through!
 - Absolute normalization still doesn't quite make sense
 - Underestimated punch through?
 - Something else is missing?
- Real problem is that I'm missing other classes of events!

$K_1 \rightarrow \pi^+\pi^-\pi^0 MC$ – no selection


- What about accidental events that fire the muon banks?
 - 6 distinct classes of events
 - 1.1 Decay + Accidental
 - 2. No decay or punch-thru
 - 3. 1 Punch-thru + Accidental
 - 4. 1 Decay + 1 Punch-thru
 - 5. 2 Decays
 - 6.2 Punch-thrus
 - Run MC with no selection
 - Let KTEVMC $K_1 \rightarrow \pi^+\pi^-\pi^0$ run normally
 - Select Trigger 5 Events $(K_L \to \pi^0 \mu^+ \mu^-, K_L \to \mu \mu \gamma \gamma)$
 - 2V * DC12 * 2MU3_LOOSE * PHVBAR1 * 2HCY_LOOSE * HCC_GE2

"Non-selected" $K_1 \rightarrow \pi^+\pi^-\pi^0 MC$

	Output of MC	After all cuts except pt2&Mass	After all cuts except Mass
No Decay or Punch	23%	3%	9%
1 Punch	> 1 %	> 1%	> 1%
1 Decay	49%	19%	24%
1 Punch + 1 Decay	> 1%	> 1%	> 1%
2 Decays	28%	77%	68%
2 Punch	0%	0%	0%


$K_1 \rightarrow \pi^+\pi^-\pi^0$ MC Inv Mass Distributions

- New "non-selected" K_L→π⁺π⁻π⁰
 MC has 3 major components after all cuts
 - Double Decay (68% after all cuts)
 - 1 Decay + Accidental (24% after all cuts)
 - No Decay or punch-thru (9% after all cuts)
- Inv Mass distributions for 3 major components are very different
- Need to look at same plots AFTER all cuts
 - Right now I don't have the stats (I've only generated 1% of 1999 data set)



"Non-selected" MC AFTER Cuts

New MC: Selected v Non-selected

Fit non-selected MC to data

Not enough "non-selected" $K_L \rightarrow \pi^+\pi^-\pi^0$ MC

Current Issues

- Normalization is better, but stats on non-selected K_L→π⁺π⁻π⁰
 MC are low.
 - $K_1 \rightarrow \pi^+\pi^-\pi^0$ MC (non-selected)
 - I've only generated 1% of 1999 data
- $K_L \rightarrow \pi \mu \nu MC$
 - I've stripped off accidentals with > 3 GeV in CsI
 - Speeds up generation by ~factor of 5
 - Possible problem: my L2 acceptances with >3GeV acc is 8.5% lower than with standard acc file
 - I've only managed to generate 4% of data
- Farm is needed
 - SashaG has copied over accidental files and set up 799 DB/Libraries
 - I've copied over trigger/FIC files
 - Compile and tested ktevmc code. Still working on porting over analysis code

Plans

- Start to generate new MC (K_L→ π⁺π⁻π⁰) on Farm in the next week
 - One 1999 Data set should take ~10 days (if FARM~300 kpasa CPUs)
- Generate MC ($K_L \rightarrow \pi \mu \nu + \gamma acc$)
 - I need to double check that I have enough accidentals
 - Only 1/3 accidentals on disk. Strip off >3 GeV acc from tape?
 - Make sure I'm not biasing my MC with the > 3 GeV in CsI Accidental events
 - One 1999 Data set should take ~8 days to generate w/o stripped accidental files
 - Probably not worth using >3GeV acc, but do I need more accidentals?
- Reduce background near box with additional cuts
 - Neutral v. charged vertex cut?
 - Upstream/downstream track-angle cut?
 - Kinematic fit?